Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
SLAS Technol ; 28(4): 251-257, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36804174

RESUMEN

Automated methods for rapidly purifying and concentrating bacteria from environmental interferents are needed in next-generation applications for anything from water purification to biological weapons detection. Though previous work has been performed by other researchers in this area, there is still a need to create an automated system that can both purify and concentrate target pathogens in a timely manner with readily available and replaceable components that could be easily integrated with a detection mechanism. Thus, the objective of this work was to design, build, and demonstrate the effectiveness of an automated system, the Automated Dual-filter method for Applied Recovery, or aDARE. aDARE uses a custom LABVIEW program that guides the flow of bacterial samples through a pair of size-based separation membranes to capture and elute the target bacteria. Using aDARE, we eliminated 95% of the interfering beads of a 5 mL-sample volume containing 107 CFU/mL of E. coli contaminated with 2 µm and 10 µm polystyrene beads at 106 beads/mL concentration., The target bacteria were concentrated to more than twice the initial concentration in 900 µL of eluent, resulting in an enrichment ratio for the target bacteria of 42 ± 13 in 5.5 min. These results show the feasibility and effectiveness of using size-based filtration membranes to purify and concentrate a target bacterium, in this case E. coli, in an automated system.


Asunto(s)
Bacterias , Escherichia coli
2.
J Dent ; 123: 104203, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35724941

RESUMEN

OBJECTIVE: Using a battery of preclinical tests to support development of a light-based treatment for COVID-19, establish a range of 425 nm light doses that are non-hazardous to the tissues of the oral cavity and assess whether a 425 nm light dose in this non-hazardous range can inactivate SARS-CoV-2 in artificial saliva. METHODS: The potential hazards to oral tissues associated with a range of acute 425 nm light doses were assessed using a battery of four preclinical tests: (1) cytotoxicity, using well-differentiated human large airway and buccal epithelial models; (2) toxicity to commensal oral bacteria, using a panel of model organisms; (3) light-induced histopathological changes, using ex vivo porcine esophageal tissue, and (4) thermal damage, by dosing the oropharynx of intact porcine head specimens. Then, 425 nm light doses established as non-hazardous using these tests were evaluated for their potential to inactivate SARS-CoV-2 in artificial saliva. RESULTS: A dose range was established at which 425 nm light is not cytotoxic in well-differentiated human large airway or buccal epithelial models, is not cytotoxic to a panel of commensal oral bacteria, does not induce histopathological damage in ex vivo porcine esophageal tissue, and does not induce thermal damage to the oropharynx of intact porcine head specimens. Using these tests, no hazards were observed for 425 nm light doses less than 63 J/cm2 delivered at irradiance less than 200 mW/cm2. A non-hazardous 425 nm light dose in this range (30 J/cm2 at 50 mW/cm2) was shown to inactivate SARS-CoV-2 in vitro in artificial saliva. CONCLUSION: Preclinical hazard assessments and SARS-CoV-2 inactivation efficacy testing were combined to guide the development of a 425 nm light-based treatment for COVID-19. CLINICAL SIGNIFICANCE: The process used here to evaluate the potential hazards associated with 425 nm acute light dosing of the oral cavity to treat COVID-19 can be extended to other wavelengths, anatomical targets, and therapeutic applications to accelerate the development of novel photomedicine treatments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Boca , Orofaringe , Saliva , Saliva Artificial , Porcinos
3.
Cell Rep ; 37(1): 109788, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610309

RESUMEN

Functional precision medicine aims to match individual cancer patients to optimal treatment through ex vivo drug susceptibility testing on patient-derived cells. However, few functional diagnostic assays have been validated against patient outcomes at scale because of limitations of such assays. Here, we describe a high-throughput assay that detects subtle changes in the mass of individual drug-treated cancer cells as a surrogate biomarker for patient treatment response. To validate this approach, we determined ex vivo response to temozolomide in a retrospective cohort of 69 glioblastoma patient-derived neurosphere models with matched patient survival and genomics. Temozolomide-induced changes in cell mass distributions predict patient overall survival similarly to O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and may aid in predictions in gliomas with mismatch-repair variants of unknown significance, where MGMT is not predictive. Our findings suggest cell mass is a promising functional biomarker for cancers and drugs that lack genomic biomarkers.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/patología , Tamaño de la Célula/efectos de los fármacos , Glioblastoma/patología , Análisis de la Célula Individual/métodos , Antineoplásicos Alquilantes/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/mortalidad , Metilación de ADN , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Ensayos de Selección de Medicamentos Antitumorales/métodos , Glioblastoma/tratamiento farmacológico , Glioblastoma/mortalidad , Humanos , Modelos Biológicos , Clasificación del Tumor , Regiones Promotoras Genéticas , Estudios Retrospectivos , Tasa de Supervivencia , Temozolomida/farmacología , Temozolomida/uso terapéutico , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
4.
Cancer Res ; 81(20): 5202-5216, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34479963

RESUMEN

HSP90 is critical for maintenance of the cellular proteostasis. In cancer cells, HSP90 also becomes a nucleating site for the stabilization of multiprotein complexes including signaling pathways and transcription complexes. Here we described the role of this HSP90 form, referred to as oncogenic HSP90, in the regulation of cytosolic metabolic pathways in proliferating B-cell lymphoma cells. Oncogenic HSP90 assisted in the organization of metabolic enzymes into non-membrane-bound functional compartments. Under experimental conditions that conserved cellular proteostasis, oncogenic HSP90 coordinated and sustained multiple metabolic pathways required for energy production and maintenance of cellular biomass as well as for secretion of extracellular metabolites. Conversely, inhibition of oncogenic HSP90, in absence of apparent client protein degradation, decreased the efficiency of MYC-driven metabolic reprogramming. This study reveals that oncogenic HSP90 supports metabolism in B-cell lymphoma cells and patients with diffuse large B-cell lymphoma, providing a novel mechanism of activity for HSP90 inhibitors. SIGNIFICANCE: The oncogenic form of HSP90 organizes and maintains functional multienzymatic metabolic hubs in cancer cells, suggesting the potential of repurposing oncogenic HSP90 selective inhibitors to disrupt metabolism in lymphoma cells.


Asunto(s)
Carcinogénesis/patología , Proteínas HSP90 de Choque Térmico/metabolismo , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Metaboloma , Proteolisis , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Carcinogénesis/metabolismo , Estudios de Casos y Controles , Proteínas HSP90 de Choque Térmico/genética , Humanos , Linfoma de Células B Grandes Difuso/genética , Ratones , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal , Células Tumorales Cultivadas
5.
Nat Commun ; 11(1): 4983, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33020492

RESUMEN

The energetic demands of a cell are believed to increase during mitosis, but the rates of ATP synthesis and consumption during mitosis have not been quantified. Here, we monitor mitochondrial membrane potential of single lymphocytic leukemia cells and demonstrate that mitochondria hyperpolarize from the G2/M transition until the metaphase-anaphase transition. This hyperpolarization was dependent on cyclin-dependent kinase 1 (CDK1) activity. By using an electrical circuit model of mitochondria, we quantify mitochondrial ATP synthesis rates in mitosis from the single-cell time-dynamics of mitochondrial membrane potential. We find that mitochondrial ATP synthesis decreases by approximately 50% during early mitosis and increases back to G2 levels during cytokinesis. Consistently, ATP levels and ATP synthesis are lower in mitosis than in G2 in synchronized cell populations. Overall, our results provide insights into mitotic bioenergetics and suggest that cell division is not a highly energy demanding process.


Asunto(s)
Adenosina Trifosfato/biosíntesis , División Celular , Metabolismo Energético , Animales , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Citocinesis , Ratones , Mitocondrias/metabolismo , Mitosis , Modelos Biológicos
6.
Rev Sci Instrum ; 90(8): 085004, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31472632

RESUMEN

Measuring the size of micron-scale particles plays a central role in the biological sciences and in a wide range of industrial processes. A variety of size parameters, such as particle diameter, volume, and mass, can be measured using electrical and optical techniques. Suspended microchannel resonators (SMRs) are microfluidic devices that directly measure particle mass by detecting a shift in resonance frequency as particles flow through a resonating microcantilever beam. While these devices offer high precision for sizing particles by mass, throughput is fundamentally limited by the small dimensions of the resonator and the limited bandwidth with which changes in resonance frequency can be tracked. Here, we introduce two complementary technical advancements that vastly increase the throughput of SMRs. First, we describe a deconvolution-based approach for extracting mass measurements from resonance frequency data, which allows an SMR to accurately measure a particle's mass approximately 16-fold faster than previously possible, increasing throughput from 120 particles/min to 2000 particles/min for our devices. Second, we describe the design and operation of new devices containing up to 16 SMRs connected fluidically in parallel and operated simultaneously on the same chip, increasing throughput to approximately 6800 particles/min without significantly degrading precision. Finally, we estimate that future systems designed to combine both of these techniques could increase throughput by nearly 200-fold compared to previously described SMR devices, with throughput potentially as high as 24 000 particles/min. We envision that increasing the throughput of SMRs will broaden the range of applications for which mass-based particle sizing can be employed.

7.
Biomicrofluidics ; 11(6): 064103, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29204244

RESUMEN

The physical characteristics of the T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interaction are known to play a central role in determining T cell function in the initial stages of the adaptive immune response. State-of-the-art assays can probe the kinetics of this interaction with single-molecular-bond resolution, but this precision typically comes at the cost of low throughput, since the complexity of these measurements largely precludes "scaling up." Here, we explore the feasibility of detecting specific TCR-pMHC interactions by flowing T cells past immobilized pMHC and measuring the reduction in cell speed due to the mechanical force of the receptor-ligand interaction. To test this new fluidic measurement modality, we fabricated a microfluidic device in which pMHC-coated beads are immobilized in hydrodynamic traps along the length of a serpentine channel. As T cells flow past the immobilized beads, their change in speed is tracked via microscopy. We validated this approach using two model systems: primary CD8+ T cells from an OT-1 TCR transgenic mouse with beads conjugated with H-2Kb:SIINFEKL, and Jurkat T cells with beads conjugated with anti-CD3 and anti-CD28 antibodies.

8.
Precis Eng ; 46: 88-95, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27672230

RESUMEN

Many experimental biological techniques utilize hollow glass needles called micropipettes to perform fluid extraction, cell manipulation, and electrophysiological recordings For electrophysiological recordings, micropipettes are typically fabricated immediately before use using a "pipette puller", which uses open-loop control to heat a hollow glass capillary while applying a tensile load. Variability between manufactured micropipettes requires a highly trained operator to qualitatively inspect each micropipette; typically this is achieved by viewing the pipette under 40-100x magnification in order to ensure that the tip has the correct shape (e.g., outer diameter, cone angle, taper length). Since laboratories may use hundreds of micropipettes per week, significant time demands are associated with micropipette inspection. Here, we have automated the measurement of micropipette tip outer diameter and cone angle using optical microscopy. The process features repeatable constraint of the micropipette, quickly and automatically moving the micropipette to bring its tip into the field of view, focusing on the tip, and computing tip outer diameter and cone angle measurements from the acquired images by applying a series of image processing algorithms. As implemented on a custom automated microscope, these methods achieved, with 95% confidence, ±0.38 µm repeatability in outer diameter measurement and ±5.45° repeatability in cone angle measurement, comparable to a trained human operator. Accuracy was evaluated by comparing optical pipette measurements with measurements obtained using scanning electron microscopy (SEM); optical outer diameter measurements differed from SEM by 0.35 ± 0.36 µm and optical cone angle measurements differed from SEM by -0.23 ± 2.32°. The algorithms we developed are adaptable to most commercial automated microscopes and provide a skill-free route to rapid, quantitative measurement of pipette tip geometry with high resolution, accuracy, and repeatability. Further, these methods are an important step toward a closed-loop, fully-automated micropipette fabrication system.

9.
J Cell Biol ; 212(4): 439-47, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26880201

RESUMEN

Cytokine regulation of lymphocyte growth and proliferation is essential for matching nutrient consumption with cell state. Here, we examine how cellular biophysical changes that occur immediately after growth factor depletion promote adaptation to reduced nutrient uptake. After growth factor withdrawal, nutrient uptake decreases, leading to apoptosis. Bcl-xL expression prevents cell death, with autophagy facilitating long-term cell survival. However, autophagy induction is slow relative to the reduction of nutrient uptake, suggesting that cells must engage additional adaptive mechanisms to respond initially to growth factor depletion. We describe an acute biophysical response to growth factor withdrawal, characterized by a simultaneous decrease in cell volume and increase in cell density, which occurs before autophagy initiation and is observed in both FL5.12 Bcl-xL cells depleted of IL-3 and primary CD8(+) T cells depleted of IL-2 that are differentiating toward memory cells. The response reduces cell surface area to minimize energy expenditure while conserving biomass, suggesting that the biophysical properties of cells can be regulated to promote survival under conditions of nutrient stress.


Asunto(s)
Metabolismo Energético , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Linfocitos/metabolismo , Adaptación Fisiológica , Animales , Apoptosis , Autofagia , Proteína 7 Relacionada con la Autofagia , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Línea Celular , Metabolismo Energético/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Interleucina-2/deficiencia , Interleucina-3/deficiencia , Activación de Linfocitos , Linfocitos/efectos de los fármacos , Linfocitos/patología , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fenotipo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
10.
PLoS One ; 11(1): e0147020, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26771837

RESUMEN

Pathologic changes in intracranial pressure (ICP) are commonly observed in a variety of medical conditions, including traumatic brain injury, stroke, brain tumors, and glaucoma. However, current ICP measurement techniques are invasive, requiring a lumbar puncture or surgical insertion of a cannula into the cerebrospinal fluid (CSF)-filled ventricles of the brain. A potential alternative approach to ICP measurement leverages the unique anatomy of the central retinal vein, which is exposed to both intraocular pressure (IOP) and ICP as it travels inside the eye and through the optic nerve; manipulating IOP while observing changes in the natural pulsations of the central retinal vein could potentially provide an accurate, indirect measure of ICP. As a step toward implementing this technique, we describe the design, fabrication, and characterization of a system that is capable of manipulating IOP in vivo with <0.1 mmHg resolution and settling times less than 2 seconds. In vitro tests were carried out to characterize system performance. Then, as a proof of concept, we used the system to manipulate IOP in tree shrews (Tupaia belangeri) while video of the retinal vessels was recorded and the caliber of a selected vein was quantified. Modulating IOP using our system elicited a rapid change in the appearance of the retinal vein of interest: IOP was lowered from 10 to 3 mmHg, and retinal vein caliber sharply increased as IOP decreased from 7 to 5 mmHg. Another important feature of this technology is its capability to measure ocular compliance and outflow facility in vivo, as demonstrated in tree shrews. Collectively, these proof-of-concept demonstrations support the utility of this system to manipulate IOP for a variety of useful applications in ocular biomechanics, and provide a framework for further study of the mechanisms of retinal venous pulsation.


Asunto(s)
Presión Intracraneal/fisiología , Presión Intraocular/fisiología , Tonometría Ocular/métodos , Animales , Humanos , Musarañas , Tonometría Ocular/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...